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Abstract

We provide technical details on why we feel the use of threads does not offer any fundamental performance
advantage over using processes for high-performance computing and hence why we plan to extend PETSc to
exascale (on emerging architectures) using node-aware MPI techniques, including neighborhood collectives and
portable shared memory within a node, instead of threads.

Introduction. With the recent shift toward many cores on a single node with shared-memory domains, a hybrid
approach has became in vogue: threads (almost always OpenMP) within each shared-memory domain (or within
each processor socket in order to address NUMA issues) and MPI across nodes. We believe that portions of the
HPC community have adopted the point of view that somehow threads are “necessary” in order to utilize such
systems, (1) without fully understanding the alternatives, including MPI 3 functionality, (2) underestimating the
difficulty of utilizing threads efficiently, and (3) without appreciating the similarities of threads and processes.
This short paper, due to space constraints, focuses exclusively on issue (3) since we feel it has gotten virtually no
attention.

A common misconception is that threads are lightweight, whereas processes are heavyweight, and that interthread
communication is fast, whereas inter-process communication is slow (and might even involve a dreaded system call).
Although this was true at certain times and on certain systems, we claim that in the world relevant to HPC today
it is incorrect. To understand whether threads are necessary to HPC, one must understand the exact technical
importance of the differences (and similarities) between threads and processes and whether these differences have
any bearing on the utility of threads versus processes.

To prevent confusion, we will use the term stream of execution to mean the values in the registers, including
the program counter, and a stack. Modern systems have multiple cores each of which may have multiple sets
of (independent) registers. Multiple cores mean that several streams of execution can run simultaneously (one
per core), and multiple sets of registers mean that a single core can switch between two streams of execution
very rapidly, for example in one clock cycle, by simply switching which set of registers is used (so-called hardware
threads or hyperthreading). This hyperthreading is intended to hide memory latency. If one stream of execution is
blocked on a memory load, the core can switch to the other stream, which, if it is not also blocked on a load, can
commence computations immediately. Each stream of execution runs in a virtual address space. All addresses used
by the stream are translated to physical addresses by the TLB (translation look-aside buffer) automatically by the
hardware before the value at that address is loaded from the caches or memory into a register. In the past, some
L1 caches used virtual addresses, which meant that switching between virtual address spaces required the entire
cache to be invalidated (this is one reason the myth of heavyweight processes developed); but for modern systems
the L1 caches are hardware address aware and changing virtual address spaces does not require flushing the cache.
Another reason switching processes in the past was expensive was that some systems would flush the TLB when
switching virtual address spaces. Modern systems allow multiple virtual address spaces to share different parts of
the TLB.

With Linux, the operating system of choice for most HPC systems, the only major difference between threads
and processes is that threads (of the same process) share the same virtual address space while different processes
have different virtual address spaces (though they can share physical memory). Scheduling of threads and processes
is handled in the same way, hence the cost of switching between threads or between processes is the same. Thus,
the only fundamental difference is that threads share all memory by default, whereas processes share no memory by
default. The one true difference between threads and processes is that threads can utilize the entire TLB for virtual
address translation, whereas processes each get a portion of the TLB. With modern large TLBs we argue that this

˚Note that this discussion relates to threads on multicore systems and does not address threads on GPU systems.
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https://www.orau.gov/hpcor2015/whitepapers/Exascale Computing without Threads-Barry Smith.pdf

PETSc Developers Care About Recent Developments

After careful evaluation: Favor MPI 3.0 (and later) over threads

Find the best long-term solutions for our users

Consider best solutions for large-scale applications, not just toy-apps
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Our Attempts in C++ Library Development

Sieve: Several years of C++ mesh management attempts in PETSc

ViennaGrid 2.x: Heavily templated C++ mesh management library

ViennaCL: Dense and sparse linear algebra and solvers for multi- and many-core architectures

Aftermath

Sieve: Replaced by DMPlex (written in C)

ViennaGrid: Version 3.0 provides C-ABI

ViennaCL: Rewrite in C likely

Sequential build times for the ViennaCL test suite
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Disadvantages of C++ TemplatesDisadvantages of C++ Templates

Static Dispatch

Architecture-specific information only available at run time

“Change code and recompile” not acceptable advice

Dealing with Compilation Errors

Type names pollute compiler output

Replicated across interfaces

CRTP may result in type length explosion

Default arguments become visible

Type Length
std::vector<int> 38
std::vector<std::vector<int> > 109
std::vector<std::vector<std::vector<int> > > 251
std::vector<std::vector<std::vector<std::vector<int> > > > 539

https://xkcd.com/303/
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https://tgceec.tumblr.com/
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Disadvantages of C++ TemplatesDisadvantages of C++ Templates

Scope Limitations

Template metaprogramming lacks state

Optimizations across multiple code lines difficult or impossible

Example

Consider vector updates in pipelined CG method:

xi ← xi−1 + αpi−1

ri ← ri−1 − αyi

pi ← ri + βpi−1

Reuse of pi−1 and ri−1 easy with for-loops, but hard with expression templates
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Disadvantages of C++ TemplatesDisadvantages of C++ Templates

Complicates Debugging

Stack traces get longer names and deeper

Setting good breakpoints may become harder

Lack of a Stable ABI

Object files from different compilers generally incompatible

Name mangling makes use outside C++ land almost impossible

High Entry Bar

Number of potential contributors inversely proportional to code sophistication

Domain scientists have limited resources for C++ templates
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A Path ForwardA Path Forward

Manage Complexity

Good interface design

Refactor code when needed

Hand-optimize small kernels only (cf. BLIS methodology)

0:6 F. Van Zee and T. Smith
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Fig. 1. An illustration of the algorithm for computing high-performance matrix multiplication, as expressed
within the BLIS framework [Van Zee and van de Geijn 2015].

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 2016.

[F. Van Zee, T. Smith, ACM TOMS 2017]

Development Implications

Adopt professional software development practices

Develop, maintain, and evolve different datastructures ...

... and code paths

Use clear and easy-to-understand datastructures

Fallacy: “Writing” an application only once in its final form
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Development Implications

Adopt professional software development practices

Develop, maintain, and evolve different datastructures ...

... and code paths

Use clear and easy-to-understand datastructures

Fallacy: “Writing” an application only once in its final form
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A Path ForwardA Path Forward

Spending Development Resources

Reuse existing libraries — reinventing the wheel is not productive!

Focus on domain- and application-specific aspects

Obtain expertise and resources for continuous code evolution

Required Incentives

Reward contributions to existing projects

Pair research funding with software development funding

Establish software development career tracks
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Is Performance Portability Just a Software Productivity Aspect?

https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf
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Long-Term Problems of Heavy C++ Templates Use

Template metaprogramming is a leaky abstraction

Excessive type names slow down all stages of Compile-Run-Debug-cycle

Templates operate at compile time - architecture ultimately known at run time

A Path Forward

Adopt professional software development practices

Be prepared to develop different datastructures and code paths

Write clear, readable code using simple datastructures

Evolve and refactor datastructures, kernels, and interfaces over time

(cf. software productivity discussions)


